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Abstract

Schwarz-Neumann’s alternating technique is applied to singularity problems in an anisotropic ‘trimaterial’, which
denotes an infinite body composed of three dissimilar materials bonded along two parallel interfaces. Linear elastic
materials under general plane deformations are assumed, in which the plane of deformation is perpendicular to the two
parallel interface planes.

It is well known that if the solution is known for singularities in a homogeneous anisotropic medium, the solution for
the same singularities in an anisotropic bimaterial can be constructed by the method of analytic continuation. It is
shown here that the solution for singularities in a homogeneous medium may also be used as a base of the solution for
the same singularities in a trimaterial. The alternating technique is applied to derive the trimaterial solution in a series
form, whose convergence is guaranteed. The solution procedure is universal in the sense that no specific information
about the singularity is needed. The energetic forces exerted on a dislocation due to interfaces are also evaluated from
the trimaterial solution. The trimaterial solution studied here can be applied to a variety of problems, e.g. a bimaterial
(including a half-plane problem), a finite thin film on semi-infinite substrate, and a finite strip of thin film, etc. Some
examples are presented to verify the usefulness of the obtained solutions. © 2002 Elsevier Science Ltd. All rights re-
served.

1. Introduction

Thin film and layered structures are technologically important in electronics and opto-electronics. De-
fects like dislocations in these structures are inevitable and affect the performance of the systems. For
example, misfit dislocations are generated to relax misfit strain in lattice-mismatched structures, and the
dislocations in the relaxed film can have a strong adverse effect on charge transport (Tu et al., 1992).
Critical thickness at which a misfit dislocation is generated, strain relaxation due to the array of misfit
dislocations, and work hardening caused by the saturation of misfit dislocations have been major issues for
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development of strained-layer semiconductor materials. From the mechanical point of view, these dislo-
cations are treated as singularities and the analysis of the elastic field near the singularity plays an im-
portant role in understanding the behavior of the structures. In addition to the intrinsic physical
significance, they can serve as kernel functions of singular integral equations, to simulate cracks by con-
tinuous distributions of dislocations. Therefore, structural failure, such as film debonding, subinterface
crack, and channeling crack, which may arise during fabrication and operation of integrated circuits, can be
analyzed with the aid of the singularity solutions (Hutchinson and Suo, 1992).

Eshelby et al. (1953) and Stroh (1958) developed the theory of anisotropic elasticity for a generalized
two-dimensional deformation and examined dislocations in an infinite homogeneous medium. Following
their works, studies on singularities in anisotropic infinite space, half-space, and bimaterial have attracted
numerous researchers, as can be found in the references cited in Ting (1996). In particular, using the method
of analytic continuation, Suo (1990) expressed the solution for a singularity in an anisotropic bimaterial in
terms of that for the same singularity in a homogeneous medium. The elastic fields of dislocations or point
forces in an anisotropic strip (i.e. homogeneous material) or film/substrate structure (i.e. bimaterial), which
are special cases of a trimaterial, are studied by using the Stroh formalism in conjunction with the Fourier
integral transform by many researchers (Alshits and Kirchner, 1995a,b; Blanco et al., 1995; Wu and Chiu,
1995; Zhang, 1995; Chiu and Wu, 1998). Especially, Alshits and Kirchner (1995a) generalized the Stroh
formalism for layered media, which were treated as materials with a variation of elastic constants with
respect to the direction normal to the layer interfaces, and applied the Fourier integral transform technique.
Various geometries, such as strips, coatings, and sandwiches, are dealt with as the applications of the
developed theory (Alshits and Kirchner, 1995b). However, their method needs the inverse Fourier trans-
form, which is somewhat cumbersome and difficult to carry out for numerical implementation. It will be
shown later that the above works can be dealt with as special cases of the present study, which makes this
straightforward method versatile, as evidenced by various examples.

Schwarz—Neumann’s alternating technique (Sokolnikoff, 1956) and the method of analytic continuation
(Suo, 1990) were applied by Choi and Earmme (1996) to solve subinterface crack problems in an aniso-
tropic bimaterial, in which the corresponding solution for a homogeneous medium is required. Chao and
Kao (1997) analyzed an isotropic trimaterial under an anti-plane concentrated force through iterations of
Mobius transformation. Their method is similar to the alternating technique and their solution can be
derived from the result of the present study. When it is difficult to find out a solution satisfying all the
governing equations and boundary conditions, the alternating technique may be used to look for a series
solution by successive approximations, which resembles the method of images in potential theory arranging
an infinite number of image singularities.

In this study, we employ the alternating technique and the method of analytic continuation, instead of
the complicated integral transform, to solve the singularity problems in an anisotropic trimaterial, in which
the homogeneous solution for the same singularities is used as a base. In Section 2, we briefly study the
theory of anisotropic elasticity, and then, Sections 3-5 are devoted to singularities in a homogeneous
medium, a bimaterial, and a trimaterial, respectively. The convergence of the trimaterial solution, the
energetic forces on a dislocation, and some examples are presented in Section 6. Finally, Section 7 con-
cludes this article.

2. Anisotropic elasticity

We begin with the brief review of anisotropic elasticity by considering a generalized two-dimensional
deformation, in which the displacements u; depend only on x; and x,. The constitutive equations for a linear
elastic material are
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Ou
i = Cijkmax_ka (i,j = 17273)a (1)
in which g;; are the stresses and Cjy, the elastic constants. The convention of summation over a repeated
subscript is used. The equations of equilibrium are
quk
Cijim =——=—=10. 2
ijki axj axm ( )
A general solution for the displacement satisfying Eq. (2) and the corresponding stresses may be written as
(Eshelby et al., 1953; Stroh, 1958)

u; = 2Re|4;fi(z)), 3)
o1 = —2Re[Lyuf(z)], (4)
o3 = 2Re|Lyf/(z)]- (5)

Here Re denotes the real part and the prime ( )" implies the derivative with respect to the associated ar-
gument. And it should be pointed out that the index with underlined bar does not imply summation, that is,
A;;fi(z)) = Anfi(z1) + Anfa(22) + Anf3(z3) but fi(z;) # fi(z1) + f2(22) + f3(23). The functions f;(z;) are ana-
lytic functions of complex variable z; = x| + px;. Each column of A and each of y; are the eigenvector and
the eigenvalue with positive imaginary part, respectively, of the sextic equation

| Citr + ,ul'(cilkZ + Con) + M;Cizkszkj =0. (6)

The matrix L is given by
Lij = (Cop + NZCi2k2)Akj~ (7)

Explicit expressions of the matrices A and L in terms of elastic compliances are given in Egs. (2.3)-(2.8) of
Suo (1990). If Eq. (6) has three distinct pairs of complex roots on which we are concentrating, the matrices
A and L are non-singular and may be used to define

B =iAL™', (8)

which is a positive definite Hermitian matrix (Stroh, 1958). Here, i = v/—1 and ( )_l stands for an inverse
of the matrix.
Now we define a dimensionless bimaterial matrix T* as follows:

T = (B* + B") '(B" — BY), 9)

in which the indices a and b stand for materials a and b, respectively, and ( ) the complex conjugate. We
note the following properties for subsequent discussion. If material a is rigid, B* =0 and therefore,
T = (B’) 'B’. On the other hand if material a does not exist (i.e. material b with free surface),
T® = —I, where I is 3 x 3 identity matrix. In general, T*" is not equal to —T"*. However, if B* + B is
real, T®® = —T* (and also real), and an interfacial crack between material a and b has non-oscillatory
characteristics (Ting, 1986). The usefulness and properties of T*® will be discussed in connection with an
anisotropic trimaterial in Section 6. For mathematical simplicity, we define two more bimaterial matrices
as follows:

U™ = (L*) (I + T®)L®, (10)

Vib = (L)' T, (11)
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Of particular importance is that the following derivatives of displacements and tractions must be con-
tinuous across the perfectly bonded interface x, = 0:

S 1) = Af ) + A ), (12)
a2i(x1) = Lyf} (x1) + Lyf (x1) (13)

Eq. (12) is equivalent to the continuity of displacements. It is obvious that a function g(z) is an analytic
function of z = x; + ux, for x, > 0 (or x; < 0) for any w if it is analytic for x, > 0 (or x, < 0) for one g,
where p is any complex number with positive imaginary part (Suo, 1990). Consequently, one can refer to
fi(z) instead of f;(z;) and, if necessary, he may reinterpret z by z;.

3. A singularity in a homogeneous medium

In the previous section, it was shown that a general solution of a generalized two-dimensional defor-
mation in anisotropic elasticity can be expressed by analytic functions f;(z). Now we examine the solution

f 9(z) of a singularity in a homogeneous medium. We take the solution form for line force or dislocation at

(x},x9) in an infinite homogeneous medium as (Stroh, 1958; Suo, 1990)

f;)(z{-) =q;In(z; — ), (14)

where s; = x) + p jx(z’ and q = {q;} is related to the Burgers vector b and the force per unit length p as

1 _ 1 _
q=5- L' (B+B) 'b——A'(B"+B H7p. (15)

4. A singularity in a bimaterial and the method of analytic continuation

Consider an anisotropic bimaterial bonded along x;-axis. Our objective is to construct a bimaterial
solution for a singularity as shown in Fig. 1 in terms of the homogeneous one for the same singularity by

Singularity

Fig. 1. A singularity in a bimaterial.
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using the method of analytic continuation (Suo, 1990). First, a singularity located in lower half space is
treated, in which the elastic constants of material b are implied in f}(z). Suo (1990) introduced f}(z) and
fjb (z) satisfying the continuity of displacements and tractions along the interface as

4 (2, in S,

where S,, the upper half-space, and Sy, the lower half space, are occupied by material a and b, respectively.
In order to express f7(z) and f?(z) analytic in S, and Sy, respectively, in terms of f7(z), the continuity of
tractions across the interface with Eq. (13), by analytic continuation arguments, is used to yield

a ra 75 Zb b £0 :
Lijf]. (z) — Ll.jfj (z) = Ll.jfj (z) =0, in S,. (17)
The continuity of displacements with Eq. (12), by the same arguments, results in
a pra b b b ,0 o :
ALf (2) — A3 f; (2) — A3 f; (z) =0, inS,. (18)

From Egs. (17) and (18), we have

£2@) = UPfIa), in S,
2@ =701, in S,
where U*® and V*® are as defined in Eqs. (10) and (11). Substitution of Eq. (19) into Eq. (16) yields the
solution. This procedure, though slightly different notations are used, was employed by Suo (1990). Even if

. .. . . . . . . —b-1
the material a is rigid or non-existent, the solution still remains valid. For the former case, ™ =B B°
and therefore

(19)

fi@) = 1E) = 4;' 4 0(z),  in S, (20)
while for the latter case, T*®® = —I and therefore
fi@) = 1) = L' Lif (), in Sp. (21)

For a singularity located in the upper half-space, the solution is assumed to be

: @)+ (&), in Sy,
””‘{ﬁ@x in S, @)
and one finds, by the similar procedure,
a _ —ba 2 .
fiz) = Vijfj (2), ?n Sas (23)
@) =Urf@E), in S,

where the elastic constants involved in f?(z) are for material a.

5. A singularity in a trimaterial and the alternating technique

The alternating technique together with the results of Sections 3 and 4 can be employed to analyze a
singularity in a trimaterial with two parallel interfaces as shown in Fig. 2. Since it is difficult to satisfy the
continuity conditions along two interfaces at the same time, the method of analytic continuation should be
applied to two interfaces alternatively. A coordinate translation is described as below in order to apply the
alternating technique to the case of the trimaterial in Fig. 2.
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Fig. 2. A singularity in a trimaterial.

5.1. A coordinate translation

Assume that regions S, : x, = & and Sy, : x, < & occupied by material a and b, respectively, are perfectly
bonded along the interface x, = & (see Fig. 2 with material c = material b). With x;x, coordinate system
lying off the interface, let us reformulate the bimaterial solution obtained in the previous section. The
solution is also assumed as Eq. (16), in which f}'(z) and f; b(z) are introduced to satisfy the continuity of
displacements and tractions along the interface x, = 4. By applying the same arguments used in Egs. (17)
and (18) to the interface x, = 4, one finds, instead of Eq. (19),

f}@) = Uz — uth+ wh), x> h,

u 2
PG = TP — k4 H), x<h 24

Substitution of Eq. (24) into Eq. (16) gives a singularity solution in a bimaterial bonded along x, = 4.

5.2. Case I: A singularity embedded in S,

Returning to a trimaterial as shown in Fig. 2, material a, b, and ¢ occupying regions S, : x; = A,
Sp:h=x; =0, and S : x, <0, respectively, are perfectly bonded along two parallel interfaces I' : x, =0
and I', : x, = h. Assume a series solution for the case of the singularity located in S, as

ZZC:I f;an(zgl)’ in Sa,
e = S S T ), in S, (25)

FOEE) + () + 000, f8(5), in S

Now, it is required to solve for £(z), f2(z), £ (z), f*(z) and f"(z) (n =1,2,3,...) analytic in their re-
spective regions in terms of f?(z). The details and the physical interpretations of each term in connection
with the alternating technique are described in Appendix A. Insertion of the results of Appendix A into Eq.
(25) leads to
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U S 17(@ = wh + ), in S,

Silz) = § S [ @) + VT — ek m)] in S, (26)
S + VTP + UV S Jr& — ih+ ), in S,

where the recurrence formula for f(z) is

. ch 0( ), if n=0
f;' (Z) = V Vab k(z_ ,leh _|_'u}:h)’ ifn= 1,2,3,. .. (27)

ij " Jjk J
Here the elastic constants of material ¢ are implied in f°(z). Eq. (26) with Eq. (27) gives the complete

solution for the singularity located in region S..

5.3. Case II: A singularity embedded in S,

Using the same procedure as case I, the other case in which the singularity is located in region S, has the
following solution:

Uf;b Z}ﬁlf-"(z —M,h-f'#bh) in S,,
Sile) = § S [ @) + VT — bh 4w in ;. (28)
(]ij’bf;‘o( )JrUCbV/k Z lfk (Z - ‘hﬁL#zh)’ in S,

in which the recurrence formula for f*(z) is

0 770 :
) ( if n=0,

f;n+1(z) — f ( )ab ljf ( ) . ’ (29)
Vle]k k(z—,ujh—|—,ukh) ifn=1,273,...

Here the elastic constants involved in f(z) are for material b.

The procedure used to derive the trimaterial solutions (26)—(29) is independent of the physical nature of
the singularities. Instead of Eq. (14), any homogeneous solutions for other singularities, e.g. a dipole of line
forces or dislocations, may be put into Egs. (26)—(29) in order to obtain the corresponding trimaterial
solutions.

6. Discussion
6.1. Convergence of the series solutions

Although it is known that a series solution obtained via the alternating technique converges to a true
solution for isotropic elastic materials (Sokolnikoff, 1956), we review and prove directly the convergence of
the series solutions (26)—(29) before we extensively make use of the solutions. It is worth pointing out that
Egs. (26) and (28) are expressed in terms of f'(z) (n =0,1,2,...), which may be calculated from a ho-
mogeneous solution f’(z) by the recurrence formulae (27) and (29). Since we are primarily interested in the
evaluation of the stresses, which are expressed in terms of f'(z), instead of f(z) (see Egs. (4) and (5)), we will
deal with the convergence of f'(z). Noting that u’s have positive imaginary parts, one can get
If"(z — h + ph)| < |f"(z)| for zin S, U S, and [£"(z — ph + ih)| < |f"(z)| for zin S, U S,, in which | - | stands
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for the magnitude of a vector. Then, from the inequality, |]a = Be| < ||B|||¢| for a matrix B and a vector ¢, it
is easy to show

|f/n+l (Z) |
|f/n+1 (Z) ‘

in which the matrix norm ||-|| is defined as the largest magnitude of its eigenvalues. Therefore, a sufficient
condition for the convergence of the series solutions that |f"*'(z)| < [f"(z)| (» > 1) for z in S, US, and
£ (2)| < [f"(z)|(n = 1) for zin S, U S, is satisfied if the norm of T*" (and also T*) is < 1, which is proved
in Appendix B by considering the eigenvalue equation of T®*. The rate of the convergence depends on the
bimaterial matrices T*® and T representing the mismatch of elastic constants of two constituent materials.
The smaller the difference of elastic constants of two adjacent materials a and b (or ¢ and b) is, the less the
norm of T* (or T) is, which is obvious from the definition of T**, Eq. (9). Consequently, the convergence
rate becomes more rapid. The thickness 4 of material b also affects the rate of convergence in such a way
that as A gets larger, the series solution is more rapidly convergent, because the ordinates of the image
singularities are linearly proportional to 4. It is found that the sum of the first three or four terms provides a
good approximation for most combinations of materials (Choi and Earmme, 1999).

Even if materials a and/or c are rigid or non-existent, the solutions still remain valid. For these limiting
cases, we replace T** and/or T in the solutions (26)—(29) by those indicated in Table 1 for the four special
combinations of three dissimilar materials. All the combinations illustrated in Table 1 are meaningful for a
singularity located in Sy, while only the combination 4 has the meaning for a singularity located in S.. For
another limiting case in which two adjacent materials, say materials a and b, are identical, the series so-
lution for a trimaterial reduces to the bimaterial one. Furthermore, if material b is rigid or non-existent, the
trimaterial solution (26) with solution (27) reduces to the solution (20) or solution (21), respectively.

VOV (2 — i+ )| < T[T )], for = in S, U S,

b _ (30)
VOV |7 (z — ik + ph)| < [ T*°||||T||[f" ()], for z in Sy UL,

VAN

6.2. The energetic forces exerted on a dislocation

The elastic force on a dislocation segment is given by (Peach and Koehler, 1950)
df = (o-b) x dl, (31)

for the stress field o, the Burgers vector b and the line segment dl. The stress field may originate not only
from the image field required to satisfy the boundary conditions, but also from external sources such as the
other dislocations, residual stresses, applied forces, etc. Note that the trimaterial solution for a dislocation
consists of a singular term and the other regular terms corresponding to the image singularities. Therefore,
combining Egs. (26) or (28), (4), (5) and (31), the image forces in x, direction per unit length of a dislocation
due to two parallel interfaces in a trimaterial are given by

2 o

f2_2bRe{Ll/,uj[ jkf °(sh) + S )+ Z (sp — wh + mh)
n=2

Table 1

Special combinations of three dissimilar materials forming a trimaterial
Combination 1 2 3 4
Material a Empty Empty Rigid Empty
Material b Elastic Elastic Elastic Elastic
Material ¢ Empty Rigid Rgg}d Elastic
T -1 -1 B B -1

T -1 B 'B° B 'B° T
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}= (33)

for a dislocation in material b or c, respectively. It is straightforward that the image force f; in the x
direction is equal to zero. One may also evaluate the image forces due to the other external agencies in the
same way.

ﬁ = 2b; RS{LU,LLI [ jkf 7 l]jCka Z /n 5 ,umh)

6.3. Some examples

Here exemplified is the structure of a Ge,Si;_, epitaxial layer on a Si substrate as shown in Fig. 3. Zhang
(1995) solved the problem of the same geometry and materials, focusing on the evaluation of the critical
film thickness, in which the Fourier transform technique is used. The elastic constants of Ge, Si, and
Ge,Si;_, with respect to the crystallographic axes, where x represents the fraction of lattice sites occupied by
Ge atoms, are given in Table 2 (Zhang, 1995; Jain et al., 1997). A Ge,Si;_, epitaxial film on the {100} or
{110} plane of Si substrate is chosen with the so-called “60° dislocation” (Zhang, 1995) on {111} glide
plane. For the {100} plane epitaxy, the coordinates x; and x, coincide with the crystallographic directions
[101] and [010], respectively, with x; =[101]. Burgers vector b of the 60° dislocation is b=
b[1/v/2,—1/4/2,0] in crystallographic notation and b= (b, by, b3) = b(1/2,—1//2,1/2) in (x;,x2,x3)
coordinate system. The dislocation tangent vector is along the x3-axis, with the normal to the slip plane
n=[111] in crystallographic notation and n= (n,,n,,n3) = (v2/v/3,1/4/3,0) in (x;,x,,x3) coordinate
system. Notice both the edge and the screw components. For the {110} plane epitaxy, the coordinate
directions x; and x, coincide with the crystallographic directions [010] and [101], respectively, with
x3 = [101]. Burgers vector b of the 60° dislocation is b = b[1/+/2, —1/+/2,0] in crystallographic notation
and b = (by, by, b3) = b(—1/+/2,1/2,1/2) in (x1,x,,x3) coordinate system. The dislocation tangent vector is
along the x;-axis, with the normal to the slip plane n=[111] in crystallographic notation and
n = (ny,ny,n3) = (1/v/3,v/2/+/3,0) in (x1,x,,x;) coordinate system. Also there are both the edge and the

dislocation (Oxg)

Si substrate

Fig. 3. A dislocation in a Ge,Si;_, epilayer on a Si substrate.

Table 2

Elastic constants of Ge, Si, and Ge,Si;_, in unit of GPa (Zhang, 1995; Jian et al., 1997) with respect to crystallographic directions
Crystal Ci1 C12 Cyq
Ge 128.9 438.3 67.1
Si 165.7 63.9 79.6

Ge,Siy 128.9x + 165.7(1 — x) 48.3x + 63.9(1 —x) 67.1x + 79.6(1 — x)
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Fig. 4. Normalized image forces vs. the position of a dislocation.

screw components. Elastic constants given in Table 2 are transformed to yield the elastic constants with
respect to the (x;,x,,x3) coordinate system. The image forces f>/fne exerted on the 60° dislocation are
plotted for x = 0.1, 0.3, and 0.5 respectively in Fig. 4, in which the curves are evaluated with terms up to
n =3 in Eq. (32), and the normalizing constant f;.. is the image force on the dislocation at a distance 4
from the {100} free surface in Si half space. It is found that the contributions of terms with n = 2, 3, and 4
to the image forces are about 3.4%, 0.15%, and 0.0075%, respectively, for x = 0.5 signifying that
! (2)|/|£"(z)| is about 0.05, which is less than | T®|| = 0.08424. Therefore, it can be seen that the error of
the approximations with terms up to n = 3 is <0.01%. Furthermore, the approximations are more accurate
for x = 0.3 and 0.1 than for x = 0.5, because ||T°|| = 0.05129 and 0.01736 for x = 0.3 and 0.1, respectively.
As can be seen in Fig. 4, the crystallographic orientation rarely affects the image force on the dislocation.
Near the Ge,Si,_,/Si interface, the image force increases as the mismatch of elastic constants increases, and
is proportional to 1/(distance from the dislocation to the interface) as shown in the work of Barnett and
Lothe (1974).

Next, as an extreme example with the slowest rate of convergence, we revisit an edge dislocation in an
anisotropic potassium strip (Wu and Chiu, 1995), that is, a trimaterial whose region S, is composed of
potassium and regions S, and S, are non-existent or rigid as shown in Fig. 5, therefore || T*®|| = || T®|| = 1.
Potassium has body-centered cubic structure and three independent elastic constants ¢;; = 4.57 GPa,
c1p = 3.74 GPa, and ¢4 = 2.63 GPa (Wu and Chiu, 1995) with respect to the cubic axes. In order to
compare the results, we choose the same Burgers vector, dislocation tangent vector, etc as those by Wu and
Chiu (1995), i.e., Burgers vector is (b/+/3)[111] and the slip plane is (321) in crystallographic notation. We
choose (x;,x3,x3) coordinate system as follows: The x;-axis is in the direction of [14 5], while x,- and x,-axes
are chosen in such a way that b= (b/v/3)[111] in crystallographic notation has the components
b = b(cos,sin,0) in (x;,x,,x3) coordinate system. Accordingly, the dislocation has the edge component
only and the normal to the slip plane is n = (—sin s, cos iy, 0) in (x1,x,x3) system. The slip plane of the edge
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[111]

Free or fixed surface /6[’

Y

h

dlslocatlon 0 X )

Free or fixed surface Xl

Fig. 5. A dislocation in an infinite strip.

dislocation is therefore inclined at an angle y with respect to the x;x; plane of the strip (see Fig. 5). The
image forces exerted on the dislocation whose slip plane is inclined at = 0°, 45°, and 90° are computed
when regions S, and S, are rigid (Fig. 6) or non-existent (Fig. 7). The curve /> vs. xJ in Fig. 6 is obtained by
adding the terms up to n = 6 while in Fig. 7, the terms up to » = 15 are included in Eq. (32). The nor-
malizing constant fg, (Or free) is the image force on a dislocation at a distance 4 from fixed (or free) surface
in K half space. It is a well-known fact that a dislocation is attracted to the free surface and repelled by the
fixed surface. For the strip with fixed surfaces (Fig. 6), the image force exerted on a dislocation is toward the
center of the strip x3/4 = 0.5, which is a stable equilibrium position, and the magnitude of the image force
at a given position decreases with the slip plane inclination /. Present result (Fig. 6) agrees well with the
Fig. 5 of Wu and Chiu (1995). It is interesting that for the strip with free surfaces (Fig. 7), the center of the

5 T
‘l
1=
4 - 1"
Y
N —— y= 0.deg
-------- “lj=45' deg
2 -

o o
T T T

KN
—

Normalized image forces, f,/f,,
o

00 01 02 03 04 05 06 07 08 09 1.0

xg/h

Fig. 6. Normalized image forces on a dislocation in a strip (potassium) with fixed—fixed surfaces.



954 S.T. Choi, Y.Y. Earmme | International Journal of Solids and Structures 39 (2002) 943-957

5 T T T T T T
= y =90. deg. (Present and Wu and Chiu's results) /
§ qb— - v =45, deg. (Present result)
k.%ﬁ v =45. deg. (Wu and Chiu's result) ,.",
~ ---¢-- y= 0. deg. (Present result) "'-':f
' 3| —— y= 0.deg (Wuand Chiu's result /
. )
g 2 At
8 /" ) »',/
O 1 / _ - gig
S / A —
£ -1 e
T -2 ////
Q 7
E /
0 /
£ .
Q
2 -5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

xg/h

Fig. 7. Normalized image forces on a dislocation in a strip (potassium) with free—free surfaces.

strip x3/h = 0.5 is a stable equilibrium for a dislocation with y = 0°, but not for a dislocation with y = 45°
or 90°. Present result (Fig. 7) is slightly different from the Fig. 3 of Wu and Chiu (1995) for yy = 0° and 45°,
which is reproduced in Fig. 7 by scanning their original figure. The difference is believed to be due to the
error of approximation in present result, even though in Fig. 7 the terms up to n = 15 in Eq. (32) are added
(in Fig. 6, it was found that the terms up to n = 6 yield satisfactory results). It is found that the rate of
convergence for an infinite strip, i.e., an extreme case of trimaterial, is dependent on the type of singularity
and boundary conditions (Choi and Earmme, in preparation). A strip with free surfaces has the slowest rate
of convergence for a dislocation with = 0°.

7. Conclusion

The alternating technique and the method of analytic continuation are employed to study the singu-
larities in an anisotropic trimaterial. It is shown here that a homogeneous solution for singularities serves as
a base to derive the trimaterial solution for the same singularities in a series form. As the solution of a
singularity in a bimaterial is interpreted with the concept of image singularities, the solution of a singularity
in a trimaterial can also be explained as the arrangement of an infinite number of image singularities. We
prove that the norm of the dimensionless bimaterial matrix T®® is < I, which guarantees the convergence of
the trimaterial solution. The convergence rate of the series solution depends on the material combinations
and the thickness of middle material. The smaller the mismatch of elastic constants of adjacent materials is,
the more rapid the convergence rate is. The solution procedure is universal in the sense that it is completely
independent of the physical nature of the singularities. In the limiting cases, in which one material (or even
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two materials) in an anisotropic trimaterial is rigid or non-existent, the solution still remains valid. Fur-
thermore, as two adjacent materials degenerates to be a homogeneous one, the trimaterial solution reduces
to the bimaterial one. Consequently, the trimaterial solution studied here can be applied to a variety of
problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on semi-infinite substrate, and
a finite strip of thin film, etc. In fact, the merit of this trimaterial solution is its wide applicability to bi-
material problems in addition to the trimaterial problem per se. The energetic forces exerted on a dislo-
cation due to interfaces are also estimated in a series form, which play an important role in the motion of
dislocation.
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Appendix A. Four steps to solve the problem of a singularity embedded in S,
Illustrated here is the procedure to solve the problem shown in Fig. 2.
A.1. Step 1. Analytic continuation across the interface T

First, we regard regions S, and S, composed of the same material b and region S, of material c. As in Eq.
(16), if f(z) is taken to be a homogeneous solution and f/'(z) and f°(z) are introduced to satisfy the
continuity of displacements and tractions across the interface I', Eq. (19) leads to

{f,«l (2) = UrfP2), inS,US, A
c0 _ 70 : .
f(2) = Vijfj (z), inS..

Since this result is based on the assumption that region S, is made up of material b, the fields produced by
f1(z) cannot satisfy the continuity conditions at the interface I',, which lies between material a and b.

A.2. Step 2. Analytic continuation across the interface I,

Region S, is composed of material a and regions Sy, and S, are regarded as made up of the same material
b. f!(z) in Eq. (A.1) having the singular points in S, U S, is treated as a homogeneous solution of material b.
This is justified, for the method of analytic continuation is completely independent of the physical nature of
the singularities. To satisfy the continuity conditions at the interface I',, if *!(z) and f?!(z) are introduced
as in Eq. (16) and Eq. (24) yields

[ 2) = Upf} (z = ith + k), in S,
77 bh 4 2R, ] (A2)
fPE) =V e — wbh + h), in S,US,,

in which f*'(z) and f"(z) can be expressed in terms of f(z) through Eq. (A.1). Here f/(z—
wh+ @bh) = f1(z — a2k + poh). Since this result is based on the assumption that region S is made up of

material b, the fields produced by /P!(z) in the above equation does not satisfy the continuity conditions at
the interface I'.
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A.3. Step 3. Analytic continuation across the interface I’

We again regard regions S, and S, composed of the same material b and region S, of material ¢. As in Eq.
(22), fP'(2) is taken to be a homogeneous solution of material b, and f?(z) and f'(z) are introduced to
satisfy the continuity of displacements and tractions across the interface I'. Accordingly it can be shown
from Eq. (23) that

fiz(z) = Vf]b]]bl(z) = Vf/b V]%b k1(Z — ,l_l]/jh + /leh)7 in S, USy, (A 3)
f1(2) = ULSP (2) = URV 3 fil(z — 10k + @0h), in S, '

L7

where f7(z) and f!(z) can be expressed in terms of f(z) through Eq. (A.1). The fields produced by f7(z) do
not satisfy the continuity conditions at the interface I',.

A.4. Step 4. Repetitions of steps 2 and 3

Steps 2 and 3 are alternatively performed with " (z), f*(z), f(z), f*"(z), and f""!(z) respectively for
n =23, ... instead of f(2), f2!(z), f*'(z), /' (z), and f?(z) in steps 2 and 3. Consequently, one can express
all functions f(z), f*(z), f*(z) and f"'(z) (n =1,2,3,...) in terms of f(z).

Appendix B. Proof of | T**|| <1

The bimaterial matrix T*® defined in Eq. (9) is rewritten as
T =2H'S" — 1, (B.1)

=b . . . o . . .
where H = B* + B’ is also a positive definite Hermitian matrix and S® = ReB® a symmetric matrix. The
norm of the matrix T*® is defined as

1T = max (|, |ial, |al), (B.2)
in which /; (i = 1,2,3) are three eigenvalues of the eigenvalue equation

T*x = Jx, (B.3)
where x is a complex vector in general. Substituting Eq. (B.1) into Eq. (B.3) yields

S°x = (Hx,  (=1(A+1). (B.4)

Making use of x = a + ib and H = S* + S + i(W?* — W) the complex equation (B.4) can be written as two
real equations:

SPa = {(S* +S")a — [(W* — W")b, (B.5)
SPh = {(S" + S°)b + {(W* — WP)a. (B.6)

If Eqs. (B.5) and (B.6) are pre-multiplied by a” and b", respectively, and Eq. (B.6) is subtracted from Eq.
(B.5), the symmetry of (S* +S") and the anti-symmetry of (W* — W®) result in

y'S"y =y (S* + Sy, (B.7)
where y = a — b. Since real matrices S* and S® are positive definite, Eq. (B.7) means
st
0<i=—22% (B.8)

T e Sh
yH(S'+S%)y
that is, the eigenvalues, 2; (= 2{; — 1), of T® are real and || < 1.
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