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Abstract

Schwarz–Neumann’s alternating technique is applied to singularity problems in an anisotropic ‘trimaterial’, which

denotes an infinite body composed of three dissimilar materials bonded along two parallel interfaces. Linear elastic

materials under general plane deformations are assumed, in which the plane of deformation is perpendicular to the two

parallel interface planes.

It is well known that if the solution is known for singularities in a homogeneous anisotropic medium, the solution for

the same singularities in an anisotropic bimaterial can be constructed by the method of analytic continuation. It is

shown here that the solution for singularities in a homogeneous medium may also be used as a base of the solution for

the same singularities in a trimaterial. The alternating technique is applied to derive the trimaterial solution in a series

form, whose convergence is guaranteed. The solution procedure is universal in the sense that no specific information

about the singularity is needed. The energetic forces exerted on a dislocation due to interfaces are also evaluated from

the trimaterial solution. The trimaterial solution studied here can be applied to a variety of problems, e.g. a bimaterial

(including a half-plane problem), a finite thin film on semi-infinite substrate, and a finite strip of thin film, etc. Some

examples are presented to verify the usefulness of the obtained solutions. � 2002 Elsevier Science Ltd. All rights re-

served.

1. Introduction

Thin film and layered structures are technologically important in electronics and opto-electronics. De-
fects like dislocations in these structures are inevitable and affect the performance of the systems. For
example, misfit dislocations are generated to relax misfit strain in lattice-mismatched structures, and the
dislocations in the relaxed film can have a strong adverse effect on charge transport (Tu et al., 1992).
Critical thickness at which a misfit dislocation is generated, strain relaxation due to the array of misfit
dislocations, and work hardening caused by the saturation of misfit dislocations have been major issues for
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development of strained-layer semiconductor materials. From the mechanical point of view, these dislo-
cations are treated as singularities and the analysis of the elastic field near the singularity plays an im-
portant role in understanding the behavior of the structures. In addition to the intrinsic physical
significance, they can serve as kernel functions of singular integral equations, to simulate cracks by con-
tinuous distributions of dislocations. Therefore, structural failure, such as film debonding, subinterface
crack, and channeling crack, which may arise during fabrication and operation of integrated circuits, can be
analyzed with the aid of the singularity solutions (Hutchinson and Suo, 1992).
Eshelby et al. (1953) and Stroh (1958) developed the theory of anisotropic elasticity for a generalized

two-dimensional deformation and examined dislocations in an infinite homogeneous medium. Following
their works, studies on singularities in anisotropic infinite space, half-space, and bimaterial have attracted
numerous researchers, as can be found in the references cited in Ting (1996). In particular, using the method
of analytic continuation, Suo (1990) expressed the solution for a singularity in an anisotropic bimaterial in
terms of that for the same singularity in a homogeneous medium. The elastic fields of dislocations or point
forces in an anisotropic strip (i.e. homogeneous material) or film/substrate structure (i.e. bimaterial), which
are special cases of a trimaterial, are studied by using the Stroh formalism in conjunction with the Fourier
integral transform by many researchers (Alshits and Kirchner, 1995a,b; Blanco et al., 1995; Wu and Chiu,
1995; Zhang, 1995; Chiu and Wu, 1998). Especially, Alshits and Kirchner (1995a) generalized the Stroh
formalism for layered media, which were treated as materials with a variation of elastic constants with
respect to the direction normal to the layer interfaces, and applied the Fourier integral transform technique.
Various geometries, such as strips, coatings, and sandwiches, are dealt with as the applications of the
developed theory (Alshits and Kirchner, 1995b). However, their method needs the inverse Fourier trans-
form, which is somewhat cumbersome and difficult to carry out for numerical implementation. It will be
shown later that the above works can be dealt with as special cases of the present study, which makes this
straightforward method versatile, as evidenced by various examples.
Schwarz–Neumann’s alternating technique (Sokolnikoff, 1956) and the method of analytic continuation

(Suo, 1990) were applied by Choi and Earmme (1996) to solve subinterface crack problems in an aniso-
tropic bimaterial, in which the corresponding solution for a homogeneous medium is required. Chao and
Kao (1997) analyzed an isotropic trimaterial under an anti-plane concentrated force through iterations of
M€oobius transformation. Their method is similar to the alternating technique and their solution can be
derived from the result of the present study. When it is difficult to find out a solution satisfying all the
governing equations and boundary conditions, the alternating technique may be used to look for a series
solution by successive approximations, which resembles the method of images in potential theory arranging
an infinite number of image singularities.
In this study, we employ the alternating technique and the method of analytic continuation, instead of

the complicated integral transform, to solve the singularity problems in an anisotropic trimaterial, in which
the homogeneous solution for the same singularities is used as a base. In Section 2, we briefly study the
theory of anisotropic elasticity, and then, Sections 3–5 are devoted to singularities in a homogeneous
medium, a bimaterial, and a trimaterial, respectively. The convergence of the trimaterial solution, the
energetic forces on a dislocation, and some examples are presented in Section 6. Finally, Section 7 con-
cludes this article.

2. Anisotropic elasticity

We begin with the brief review of anisotropic elasticity by considering a generalized two-dimensional
deformation, in which the displacements uj depend only on x1 and x2. The constitutive equations for a linear
elastic material are
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rij ¼ Cijkm
ouk
oxm

; ði; j ¼ 1; 2; 3Þ; ð1Þ

in which rij are the stresses and Cijkm the elastic constants. The convention of summation over a repeated
subscript is used. The equations of equilibrium are

Cijkm
o2uk

oxj oxm
¼ 0: ð2Þ

A general solution for the displacement satisfying Eq. (2) and the corresponding stresses may be written as
(Eshelby et al., 1953; Stroh, 1958)

ui ¼ 2RebAijfjðzjÞc; ð3Þ

r1i ¼ �2RebLijljf
0
j ðzjÞc; ð4Þ

r2i ¼ 2RebLijf 0
j ðzjÞc: ð5Þ

Here Re denotes the real part and the prime ð Þ0 implies the derivative with respect to the associated ar-
gument. And it should be pointed out that the index with underlined bar does not imply summation, that is,
AijfjðzjÞ ¼ Ai1f1ðz1Þ þ Ai2f2ðz2Þ þ Ai3f3ðz3Þ but fjðzjÞ 6¼ f1ðz1Þ þ f2ðz2Þ þ f3ðz3Þ. The functions fjðzjÞ are ana-
lytic functions of complex variable zj ¼ x1 þ ljx2. Each column of A and each of lj are the eigenvector and
the eigenvalue with positive imaginary part, respectively, of the sextic equation

bCi1k1 þ ljðCi1k2 þ Ci2k1Þ þ l2jCi2k2cAkj ¼ 0: ð6Þ

The matrix L is given by

Lij ¼ ðCi2k1 þ ljCi2k2ÞAkj: ð7Þ

Explicit expressions of the matrices A and L in terms of elastic compliances are given in Eqs. (2.3)–(2.8) of
Suo (1990). If Eq. (6) has three distinct pairs of complex roots on which we are concentrating, the matrices
A and L are non-singular and may be used to define

B 
 iAL�1; ð8Þ
which is a positive definite Hermitian matrix (Stroh, 1958). Here, i ¼

ffiffiffiffiffiffiffi
�1

p
and ð Þ�1 stands for an inverse

of the matrix.
Now we define a dimensionless bimaterial matrix Tab as follows:

Tab 
 ðBa þ B
bÞ�1ðBb � BaÞ; ð9Þ

in which the indices a and b stand for materials a and b, respectively, and ð Þ the complex conjugate. We
note the following properties for subsequent discussion. If material a is rigid, Ba ¼ 0 and therefore,
Tab ¼ ðBbÞ�1Bb. On the other hand if material a does not exist (i.e. material b with free surface),
Tab ¼ �I, where I is 3� 3 identity matrix. In general, Tab is not equal to �Tba. However, if Ba þ B

b
is

real, Tab ¼ �Tba (and also real), and an interfacial crack between material a and b has non-oscillatory
characteristics (Ting, 1986). The usefulness and properties of Tab will be discussed in connection with an
anisotropic trimaterial in Section 6. For mathematical simplicity, we define two more bimaterial matrices
as follows:

Uab 
 ðLaÞ�1ðIþ TabÞLb; ð10Þ

Vab 
 ðLbÞ�1TabLb: ð11Þ
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Of particular importance is that the following derivatives of displacements and tractions must be con-
tinuous across the perfectly bonded interface x2 ¼ 0:

oui
ox1

ðx1Þ ¼ Aijf 0
j ðx1Þ þ Aij

�ff 0
j ðx1Þ; ð12Þ

r2iðx1Þ ¼ Lijf 0
j ðx1Þ þ Lij

�ff 0
j ðx1Þ: ð13Þ

Eq. (12) is equivalent to the continuity of displacements. It is obvious that a function gðzÞ is an analytic
function of z ¼ x1 þ lx2 for x2 > 0 (or x2 < 0) for any l if it is analytic for x2 > 0 (or x2 < 0) for one l,
where l is any complex number with positive imaginary part (Suo, 1990). Consequently, one can refer to
fjðzÞ instead of fjðzjÞ and, if necessary, he may reinterpret z by zj.

3. A singularity in a homogeneous medium

In the previous section, it was shown that a general solution of a generalized two-dimensional defor-
mation in anisotropic elasticity can be expressed by analytic functions fjðzÞ. Now we examine the solution
f 0j ðzÞ of a singularity in a homogeneous medium. We take the solution form for line force or dislocation at
ðx01; x02Þ in an infinite homogeneous medium as (Stroh, 1958; Suo, 1990)

f 0j ðzjÞ ¼ qj lnðzj � sjÞ; ð14Þ

where sj ¼ x01 þ ljx
0
2 and q ¼ fqjg is related to the Burgers vector b and the force per unit length p as

q ¼ 1

2p
L�1ðBþ BÞ�1b� 1

2p
A�1ðB�1 þ B

�1Þ�1p: ð15Þ

4. A singularity in a bimaterial and the method of analytic continuation

Consider an anisotropic bimaterial bonded along x1-axis. Our objective is to construct a bimaterial
solution for a singularity as shown in Fig. 1 in terms of the homogeneous one for the same singularity by

Fig. 1. A singularity in a bimaterial.
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using the method of analytic continuation (Suo, 1990). First, a singularity located in lower half space is
treated, in which the elastic constants of material b are implied in f 0j ðzÞ. Suo (1990) introduced f aj ðzÞ and
f bj ðzÞ satisfying the continuity of displacements and tractions along the interface as

fiðziÞ ¼
f ai ðzai Þ; in Sa;
f bi ðzbi Þ þ f 0i ðzbi Þ; in Sb;

(
ð16Þ

where Sa, the upper half-space, and Sb, the lower half space, are occupied by material a and b, respectively.
In order to express f aj ðzÞ and f bj ðzÞ analytic in Sa and Sb, respectively, in terms of f 0j ðzÞ, the continuity of
tractions across the interface with Eq. (13), by analytic continuation arguments, is used to yield

Laijf
a
j ðzÞ � L

b

ij
�ff bj ðzÞ � Lbijf

0
j ðzÞ ¼ 0; in Sa: ð17Þ

The continuity of displacements with Eq. (12), by the same arguments, results in

Aaijf
a
j ðzÞ � �AAbij�ff

b
j ðzÞ � Abijf

0
j ðzÞ ¼ 0; in Sa: ð18Þ

From Eqs. (17) and (18), we have

f ai ðzÞ ¼ U ab
ij f

0
j ðzÞ; in Sa;

f bi ðzÞ ¼ V
ab

ij
�ff 0j ðzÞ; in Sb;

(
ð19Þ

where Uab and Vab are as defined in Eqs. (10) and (11). Substitution of Eq. (19) into Eq. (16) yields the
solution. This procedure, though slightly different notations are used, was employed by Suo (1990). Even if
the material a is rigid or non-existent, the solution still remains valid. For the former case, Tab ¼ B

b�1
Bb

and therefore

fiðzbi Þ ¼ f 0i ðzbi Þ � A�1
ij
�AAjk

�ff 0k ðzbi Þ; in Sb; ð20Þ

while for the latter case, Tab ¼ �I and therefore

fiðzbi Þ ¼ f 0i ðzbi Þ � L�1
ij Ljk

�ff 0k ðzbi Þ; in Sb: ð21Þ

For a singularity located in the upper half-space, the solution is assumed to be

fiðziÞ ¼
f ai ðzai Þ þ f 0i ðzai Þ; in Sa;
f bi ðzbi Þ; in Sb;

(
ð22Þ

and one finds, by the similar procedure,

f ai ðzÞ ¼ V
ba

ij
�ff 0j ðzÞ; in Sa;

f bi ðzÞ ¼ Uba
ij f

0
j ðzÞ; in Sb;

(
ð23Þ

where the elastic constants involved in f 0i ðzÞ are for material a.

5. A singularity in a trimaterial and the alternating technique

The alternating technique together with the results of Sections 3 and 4 can be employed to analyze a
singularity in a trimaterial with two parallel interfaces as shown in Fig. 2. Since it is difficult to satisfy the
continuity conditions along two interfaces at the same time, the method of analytic continuation should be
applied to two interfaces alternatively. A coordinate translation is described as below in order to apply the
alternating technique to the case of the trimaterial in Fig. 2.
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5.1. A coordinate translation

Assume that regions Sa : x2 P h and Sb : x26 h occupied by material a and b, respectively, are perfectly
bonded along the interface x2 ¼ h (see Fig. 2 with material c¼material b). With x1x2 coordinate system
lying off the interface, let us reformulate the bimaterial solution obtained in the previous section. The
solution is also assumed as Eq. (16), in which f aj ðzÞ and f bj ðzÞ are introduced to satisfy the continuity of
displacements and tractions along the interface x2 ¼ h. By applying the same arguments used in Eqs. (17)
and (18) to the interface x2 ¼ h, one finds, instead of Eq. (19),

f ai ðzÞ ¼ U ab
ij f

0
j ðz� lai hþ lbj hÞ; x2 P h;

f bi ðzÞ ¼ V
ab

ij
�ff 0j ðz� lbi hþ �llbj hÞ; x26 h:

8<
: ð24Þ

Substitution of Eq. (24) into Eq. (16) gives a singularity solution in a bimaterial bonded along x2 ¼ h.

5.2. Case I: A singularity embedded in Sc

Returning to a trimaterial as shown in Fig. 2, material a, b, and c occupying regions Sa : x2 P h,
Sb : hP x2 P 0, and Sc : x26 0, respectively, are perfectly bonded along two parallel interfaces C : x2 ¼ 0
and C� : x2 ¼ h. Assume a series solution for the case of the singularity located in Sc as

fiðziÞ ¼

P1
n¼1 f

an
i ðzai Þ; in Sa;P1

n¼1 f
n
i ðzbi Þ þ

P1
n¼1 f

bn
i ðzbi Þ; in Sb;

f 0i ðzci Þ þ f c0i ðzci Þ þ
P1

n¼1 f
cn
i ðzci Þ; in Sc:

8><
>: ð25Þ

Now, it is required to solve for f c0i ðzÞ, f ani ðzÞ, f bni ðzÞ, f cni ðzÞ and f n
i ðzÞ ðn ¼ 1; 2; 3; . . .Þ analytic in their re-

spective regions in terms of f 0i ðzÞ. The details and the physical interpretations of each term in connection
with the alternating technique are described in Appendix A. Insertion of the results of Appendix A into Eq.
(25) leads to

Fig. 2. A singularity in a trimaterial.
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fiðziÞ ¼

U ab
ij

P1
n¼1 f

n
j ðzai � lai hþ lbj hÞ; in Sa;P1

n¼1 f n
i ðzbi Þ þ V

ab

ij
�ff n
j ðzbi � lbi hþ �llbj hÞ

h i
; in Sb;

f 0i ðzci Þ þ V
bc

ij
�ff 0j ðzci Þ þ U cb

ij V
ab

jk

P1
n¼1

�ff n
k ðzci � lbj hþ �llbk hÞ; in Sc;

8>>><
>>>:

ð26Þ

where the recurrence formula for f n
i ðzÞ is

f nþ1
i ðzÞ ¼

Ubc
ij f

0
j ðzÞ; if n ¼ 0;

V
cb

ij V
ab
jk f n

k ðz� �llbj hþ lbk hÞ; if n ¼ 1; 2; 3; . . .

(
ð27Þ

Here the elastic constants of material c are implied in f 0i ðzÞ. Eq. (26) with Eq. (27) gives the complete
solution for the singularity located in region Sc.

5.3. Case II: A singularity embedded in Sb

Using the same procedure as case I, the other case in which the singularity is located in region Sb has the
following solution:

fiðziÞ ¼

U ab
ij

P1
n¼1 f

n
j ðzai � lai hþ lbj hÞ; in Sa;P1

n¼1 f n
i ðzbi Þ þ V

ab

ij
�ff n
j ðzbi � lbi hþ �llbj hÞ

h i
; in Sb;

U cb
ij f

0
j ðzci Þ þ U cb

ij V
ab

jk

P1
n¼1

�ff n
k ðzci � lbj hþ �llbk hÞ; in Sc;

8>>><
>>>:

ð28Þ

in which the recurrence formula for f n
i ðzÞ is

f nþ1
i ðzÞ ¼

f 0i ðzÞ þ V
cb

ij
�ff 0j ðzÞ; if n ¼ 0;

V
cb

ij V
ab
jk f n

k ðz� �llbj hþ lbk hÞ; if n ¼ 1; 2; 3; . . .

8<
: ð29Þ

Here the elastic constants involved in f 0i ðzÞ are for material b.
The procedure used to derive the trimaterial solutions (26)–(29) is independent of the physical nature of

the singularities. Instead of Eq. (14), any homogeneous solutions for other singularities, e.g. a dipole of line
forces or dislocations, may be put into Eqs. (26)–(29) in order to obtain the corresponding trimaterial
solutions.

6. Discussion

6.1. Convergence of the series solutions

Although it is known that a series solution obtained via the alternating technique converges to a true
solution for isotropic elastic materials (Sokolnikoff, 1956), we review and prove directly the convergence of
the series solutions (26)–(29) before we extensively make use of the solutions. It is worth pointing out that
Eqs. (26) and (28) are expressed in terms of fnðzÞ (n ¼ 0; 1; 2; . . .), which may be calculated from a ho-
mogeneous solution f0ðzÞ by the recurrence formulae (27) and (29). Since we are primarily interested in the
evaluation of the stresses, which are expressed in terms of f 0ðzÞ, instead of fðzÞ (see Eqs. (4) and (5)), we will
deal with the convergence of f 0ðzÞ. Noting that l’s have positive imaginary parts, one can get
jf 0nðz� �llhþ lhÞj < jf 0nðzÞj for z in Sa [ Sb and j�ff 0nðz� lhþ �llhÞj < j�ff 0nðzÞj for z in Sb [ Sc, in which j � j stands
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for the magnitude of a vector. Then, from the inequality, ja ¼ Bcj6 kBkjcj for a matrix B and a vector c, it
is easy to show

jf 0nþ1ðzÞj6 kVcbVabkjf 0nðz� �llhþ lhÞj < kTabkkTcbkjf 0nðzÞj; for z in Sa [ Sb;

j�ff 0nþ1ðzÞj6 kVcbVabkj�ff 0nðz� �llhþ lhÞj < kTabkkTcbkj�ff 0nðzÞj; for z in Sb [ Sc;
ð30Þ

in which the matrix norm �k k is defined as the largest magnitude of its eigenvalues. Therefore, a sufficient
condition for the convergence of the series solutions that jf 0nþ1ðzÞj < jf 0nðzÞj ðnP 1Þ for z in Sa [ Sb and
j�ff 0nþ1ðzÞj < j�ff 0nðzÞjðnP 1Þ for z in Sb [ Sc is satisfied if the norm of T

ab (and also Tcb) is 6 1, which is proved
in Appendix B by considering the eigenvalue equation of Tab. The rate of the convergence depends on the
bimaterial matrices Tab and Tcb representing the mismatch of elastic constants of two constituent materials.
The smaller the difference of elastic constants of two adjacent materials a and b (or c and b) is, the less the
norm of Tab (or Tcb) is, which is obvious from the definition of Tab, Eq. (9). Consequently, the convergence
rate becomes more rapid. The thickness h of material b also affects the rate of convergence in such a way
that as h gets larger, the series solution is more rapidly convergent, because the ordinates of the image
singularities are linearly proportional to h. It is found that the sum of the first three or four terms provides a
good approximation for most combinations of materials (Choi and Earmme, 1999).
Even if materials a and/or c are rigid or non-existent, the solutions still remain valid. For these limiting

cases, we replace Tab and/or Tcb in the solutions (26)–(29) by those indicated in Table 1 for the four special
combinations of three dissimilar materials. All the combinations illustrated in Table 1 are meaningful for a
singularity located in Sb, while only the combination 4 has the meaning for a singularity located in Sc. For
another limiting case in which two adjacent materials, say materials a and b, are identical, the series so-
lution for a trimaterial reduces to the bimaterial one. Furthermore, if material b is rigid or non-existent, the
trimaterial solution (26) with solution (27) reduces to the solution (20) or solution (21), respectively.

6.2. The energetic forces exerted on a dislocation

The elastic force on a dislocation segment is given by (Peach and Koehler, 1950)

df ¼ ðr � bÞ � dl; ð31Þ
for the stress field r, the Burgers vector b and the line segment dl. The stress field may originate not only
from the image field required to satisfy the boundary conditions, but also from external sources such as the
other dislocations, residual stresses, applied forces, etc. Note that the trimaterial solution for a dislocation
consists of a singular term and the other regular terms corresponding to the image singularities. Therefore,
combining Eqs. (26) or (28), (4), (5) and (31), the image forces in x2 direction per unit length of a dislocation
due to two parallel interfaces in a trimaterial are given by

f2 ¼ 2biRe Lbijl
b
j V

cb

jk
�ff 00
k ðsbj Þ

"(
þ
X1
n¼2

f 0n
j ðsbj Þ þ V

ab

jk

X1
n¼1

�ff 0n
k ðsbj � lbj hþ �llbk hÞ

#)
; ð32Þ

Table 1

Special combinations of three dissimilar materials forming a trimaterial

Combination 1 2 3 4

Material a Empty Empty Rigid Empty

Material b Elastic Elastic Elastic Elastic

Material c Empty Rigid Rigid Elastic

Tab �I �I B
b�1

Bb �I

Tcb �I B
b�1

Bb B
b�1

Bb Tcb
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f2 ¼ 2biRe Lcijl
c
j V

bc

jk
�ff 00
k ðscjÞ

"(
þ U cb

jk V
ab

km

X1
n¼1

�ff 0n
m ðscj � lbk hþ �llbmhÞ

#)
; ð33Þ

for a dislocation in material b or c, respectively. It is straightforward that the image force f1 in the x1
direction is equal to zero. One may also evaluate the image forces due to the other external agencies in the
same way.

6.3. Some examples

Here exemplified is the structure of a GexSi1�x epitaxial layer on a Si substrate as shown in Fig. 3. Zhang
(1995) solved the problem of the same geometry and materials, focusing on the evaluation of the critical
film thickness, in which the Fourier transform technique is used. The elastic constants of Ge, Si, and
GexSi1�x with respect to the crystallographic axes, where x represents the fraction of lattice sites occupied by
Ge atoms, are given in Table 2 (Zhang, 1995; Jain et al., 1997). A GexSi1�x epitaxial film on the {1 0 0} or
{1 1 0} plane of Si substrate is chosen with the so-called ‘‘60� dislocation’’ (Zhang, 1995) on {1 1 1} glide
plane. For the {1 0 0} plane epitaxy, the coordinates x1 and x2 coincide with the crystallographic directions
[10�11] and [0 1 0], respectively, with x3 ¼ ½101�. Burgers vector b of the 60� dislocation is b ¼
b½1=

ffiffiffi
2

p
;�1=

ffiffiffi
2

p
; 0� in crystallographic notation and b ¼ ðb1; b2; b3Þ ¼ bð1=2;�1=

ffiffiffi
2

p
; 1=2Þ in ðx1; x2; x3Þ

coordinate system. The dislocation tangent vector is along the x3-axis, with the normal to the slip plane
n ¼ ½11�11� in crystallographic notation and n ¼ ðn1; n2; n3Þ ¼ ð

ffiffiffi
2

p
=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 0Þ in ðx1; x2; x3Þ coordinate

system. Notice both the edge and the screw components. For the {1 1 0} plane epitaxy, the coordinate
directions x1 and x2 coincide with the crystallographic directions [0 1 0] and [1 0 1], respectively, with
x3 ¼ ½10�11�. Burgers vector b of the 60� dislocation is b ¼ b½1=

ffiffiffi
2

p
;�1=

ffiffiffi
2

p
; 0� in crystallographic notation

and b ¼ ðb1; b2; b3Þ ¼ bð�1=
ffiffiffi
2

p
; 1=2; 1=2Þ in ðx1; x2; x3Þ coordinate system. The dislocation tangent vector is

along the x3-axis, with the normal to the slip plane n ¼ ½111� in crystallographic notation and
n ¼ ðn1; n2; n3Þ ¼ ð1=

ffiffiffi
3

p
;

ffiffiffi
2

p
=

ffiffiffi
3

p
; 0Þ in ðx1; x2; x3Þ coordinate system. Also there are both the edge and the

Fig. 3. A dislocation in a GexSi1�x epilayer on a Si substrate.

Table 2

Elastic constants of Ge, Si, and GexSi1�x in unit of GPa (Zhang, 1995; Jian et al., 1997) with respect to crystallographic directions

Crystal c11 c12 c44

Ge 128.9 48.3 67.1

Si 165.7 63.9 79.6

GexSi1�x 128:9xþ 165:7ð1� xÞ 48:3xþ 63:9ð1� xÞ 67:1xþ 79:6ð1� xÞ
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screw components. Elastic constants given in Table 2 are transformed to yield the elastic constants with
respect to the ðx1; x2; x3Þ coordinate system. The image forces f2=ffree exerted on the 60� dislocation are
plotted for x ¼ 0:1, 0.3, and 0.5 respectively in Fig. 4, in which the curves are evaluated with terms up to
n ¼ 3 in Eq. (32), and the normalizing constant ffree is the image force on the dislocation at a distance h
from the {1 0 0} free surface in Si half space. It is found that the contributions of terms with n ¼ 2, 3, and 4
to the image forces are about 3.4%, 0.15%, and 0.0075%, respectively, for x ¼ 0:5 signifying that
jf 0nþ1ðzÞj=jf 0nðzÞj is about 0.05, which is less than kTcbk ¼ 0:08424. Therefore, it can be seen that the error of
the approximations with terms up to n ¼ 3 is <0.01%. Furthermore, the approximations are more accurate
for x ¼ 0:3 and 0.1 than for x ¼ 0:5, because kTcbk ¼ 0:05129 and 0.01736 for x ¼ 0:3 and 0.1, respectively.
As can be seen in Fig. 4, the crystallographic orientation rarely affects the image force on the dislocation.
Near the GexSi1�x/Si interface, the image force increases as the mismatch of elastic constants increases, and
is proportional to 1=(distance from the dislocation to the interface) as shown in the work of Barnett and
Lothe (1974).
Next, as an extreme example with the slowest rate of convergence, we revisit an edge dislocation in an

anisotropic potassium strip (Wu and Chiu, 1995), that is, a trimaterial whose region Sb is composed of
potassium and regions Sa and Sc are non-existent or rigid as shown in Fig. 5, therefore kTabk ¼ kTcbk ¼ 1.
Potassium has body-centered cubic structure and three independent elastic constants c11 ¼ 4:57 GPa,
c12 ¼ 3:74 GPa, and c44 ¼ 2:63 GPa (Wu and Chiu, 1995) with respect to the cubic axes. In order to
compare the results, we choose the same Burgers vector, dislocation tangent vector, etc as those by Wu and
Chiu (1995), i.e., Burgers vector is ðb=

ffiffiffi
3

p
Þ½111� and the slip plane is ð3�22�11Þ in crystallographic notation. We

choose ðx1; x2; x3Þ coordinate system as follows: The x3-axis is in the direction of ½14�55�, while x1- and x2-axes
are chosen in such a way that b ¼ ðb=

ffiffiffi
3

p
Þ½111� in crystallographic notation has the components

b ¼ bðcosw; sinw; 0Þ in ðx1; x2; x3Þ coordinate system. Accordingly, the dislocation has the edge component
only and the normal to the slip plane is n ¼ ð�sinw; cosw; 0Þ in ðx1; x2; x3Þ system. The slip plane of the edge

Fig. 4. Normalized image forces vs. the position of a dislocation.
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dislocation is therefore inclined at an angle w with respect to the x1x3 plane of the strip (see Fig. 5). The
image forces exerted on the dislocation whose slip plane is inclined at w ¼ 0�, 45�, and 90� are computed
when regions Sa and Sc are rigid (Fig. 6) or non-existent (Fig. 7). The curve f2 vs. x02 in Fig. 6 is obtained by
adding the terms up to n ¼ 6 while in Fig. 7, the terms up to n ¼ 15 are included in Eq. (32). The nor-
malizing constant ffix (or ffree) is the image force on a dislocation at a distance h from fixed (or free) surface
in K half space. It is a well-known fact that a dislocation is attracted to the free surface and repelled by the
fixed surface. For the strip with fixed surfaces (Fig. 6), the image force exerted on a dislocation is toward the
center of the strip x02=h ¼ 0:5, which is a stable equilibrium position, and the magnitude of the image force
at a given position decreases with the slip plane inclination w. Present result (Fig. 6) agrees well with the
Fig. 5 of Wu and Chiu (1995). It is interesting that for the strip with free surfaces (Fig. 7), the center of the

Fig. 5. A dislocation in an infinite strip.

Fig. 6. Normalized image forces on a dislocation in a strip (potassium) with fixed–fixed surfaces.
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strip x02=h ¼ 0:5 is a stable equilibrium for a dislocation with w ¼ 0�, but not for a dislocation with w ¼ 45�
or 90�. Present result (Fig. 7) is slightly different from the Fig. 3 of Wu and Chiu (1995) for w ¼ 0� and 45�,
which is reproduced in Fig. 7 by scanning their original figure. The difference is believed to be due to the
error of approximation in present result, even though in Fig. 7 the terms up to n ¼ 15 in Eq. (32) are added
(in Fig. 6, it was found that the terms up to n ¼ 6 yield satisfactory results). It is found that the rate of
convergence for an infinite strip, i.e., an extreme case of trimaterial, is dependent on the type of singularity
and boundary conditions (Choi and Earmme, in preparation). A strip with free surfaces has the slowest rate
of convergence for a dislocation with w ¼ 0�.

7. Conclusion

The alternating technique and the method of analytic continuation are employed to study the singu-
larities in an anisotropic trimaterial. It is shown here that a homogeneous solution for singularities serves as
a base to derive the trimaterial solution for the same singularities in a series form. As the solution of a
singularity in a bimaterial is interpreted with the concept of image singularities, the solution of a singularity
in a trimaterial can also be explained as the arrangement of an infinite number of image singularities. We
prove that the norm of the dimensionless bimaterial matrix Tab is 6 1, which guarantees the convergence of
the trimaterial solution. The convergence rate of the series solution depends on the material combinations
and the thickness of middle material. The smaller the mismatch of elastic constants of adjacent materials is,
the more rapid the convergence rate is. The solution procedure is universal in the sense that it is completely
independent of the physical nature of the singularities. In the limiting cases, in which one material (or even

Fig. 7. Normalized image forces on a dislocation in a strip (potassium) with free–free surfaces.
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two materials) in an anisotropic trimaterial is rigid or non-existent, the solution still remains valid. Fur-
thermore, as two adjacent materials degenerates to be a homogeneous one, the trimaterial solution reduces
to the bimaterial one. Consequently, the trimaterial solution studied here can be applied to a variety of
problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on semi-infinite substrate, and
a finite strip of thin film, etc. In fact, the merit of this trimaterial solution is its wide applicability to bi-
material problems in addition to the trimaterial problem per se. The energetic forces exerted on a dislo-
cation due to interfaces are also estimated in a series form, which play an important role in the motion of
dislocation.
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Appendix A. Four steps to solve the problem of a singularity embedded in Sc

Illustrated here is the procedure to solve the problem shown in Fig. 2.

A.1. Step 1. Analytic continuation across the interface C

First, we regard regions Sa and Sb composed of the same material b and region Sc of material c. As in Eq.
(16), if f 0i ðzÞ is taken to be a homogeneous solution and f 1i ðzÞ and f c0i ðzÞ are introduced to satisfy the
continuity of displacements and tractions across the interface C, Eq. (19) leads to

f 1i ðzÞ ¼ Ubc
ij f

0
j ðzÞ; in Sa [ Sb;

f c0i ðzÞ ¼ V
bc

ij
�ff 0j ðzÞ; in Sc:

(
ðA:1Þ

Since this result is based on the assumption that region Sa is made up of material b, the fields produced by
f 1i ðzÞ cannot satisfy the continuity conditions at the interface C�, which lies between material a and b.

A.2. Step 2. Analytic continuation across the interface C�

Region Sa is composed of material a and regions Sb and Sc are regarded as made up of the same material
b. f 1i ðzÞ in Eq. (A.1) having the singular points in Sb [ Sc is treated as a homogeneous solution of material b.
This is justified, for the method of analytic continuation is completely independent of the physical nature of
the singularities. To satisfy the continuity conditions at the interface C�, if f a1i ðzÞ and f b1i ðzÞ are introduced
as in Eq. (16) and Eq. (24) yields

f a1i ðzÞ ¼ U ab
ij f

1
j ðz� lai hþ lbj hÞ; in Sa;

f b1i ðzÞ ¼ V
ab

ij
�ff 1j ðz� lbi hþ �llbj hÞ; in Sb [ Sc;

8<
: ðA:2Þ

in which f a1i ðzÞ and f b1i ðzÞ can be expressed in terms of f 0i ðzÞ through Eq. (A.1). Here �ff 1j ðz�
lbi hþ �llbj hÞ ¼ f 1j ð�zz� �llbi hþ lbj hÞ. Since this result is based on the assumption that region Sc is made up of
material b, the fields produced by f b1i ðzÞ in the above equation does not satisfy the continuity conditions at
the interface C.
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A.3. Step 3. Analytic continuation across the interface C

We again regard regions Sa and Sb composed of the same material b and region Sc of material c. As in Eq.
(22), f b1i ðzÞ is taken to be a homogeneous solution of material b, and f 2i ðzÞ and f c1i ðzÞ are introduced to
satisfy the continuity of displacements and tractions across the interface C. Accordingly it can be shown
from Eq. (23) that

f 2i ðzÞ ¼ V
cb

ij
�ff b1j ðzÞ ¼ V

cb

ij V
ab
jk f 1k ðz� �llbj hþ lbk hÞ; in Sa [ Sb;

f c1i ðzÞ ¼ U cb
ij f

b1
j ðzÞ ¼ U cb

ij V
ab

jk
�ff 1k ðz� lbj hþ �llbk hÞ; in Sc;

8<
: ðA:3Þ

where f 2i ðzÞ and f c1i ðzÞ can be expressed in terms of f 0i ðzÞ through Eq. (A.1). The fields produced by f 2i ðzÞ do
not satisfy the continuity conditions at the interface C�.

A.4. Step 4. Repetitions of steps 2 and 3

Steps 2 and 3 are alternatively performed with f n
i ðzÞ, f ani ðzÞ, f bni ðzÞ, f cni ðzÞ, and f nþ1

i ðzÞ respectively for
n ¼ 2; 3; . . . instead of f 1i ðzÞ, f a1i ðzÞ, f b1i ðzÞ, f c1i ðzÞ, and f 2i ðzÞ in steps 2 and 3. Consequently, one can express
all functions f ani ðzÞ, f bni ðzÞ, f cni ðzÞ and f nþ1

i ðzÞ ðn ¼ 1; 2; 3; . . .Þ in terms of f 0i ðzÞ.

Appendix B. Proof of kTabk6 1

The bimaterial matrix Tab defined in Eq. (9) is rewritten as

Tab ¼ 2H�1Sb � I; ðB:1Þ
where H ¼ Ba þ B

b
is also a positive definite Hermitian matrix and Sb ¼ ReBb a symmetric matrix. The

norm of the matrix Tab is defined as

kTabk 
 maxðjk1j; jk2j; jk3jÞ; ðB:2Þ
in which ki ði ¼ 1; 2; 3Þ are three eigenvalues of the eigenvalue equation

Tabx ¼ kx; ðB:3Þ
where x is a complex vector in general. Substituting Eq. (B.1) into Eq. (B.3) yields

Sbx ¼ fHx; f ¼ 1
2
ðk þ 1Þ: ðB:4Þ

Making use of x ¼ aþ ib and H ¼ Sa þ Sb þ iðWa �WbÞ the complex equation (B.4) can be written as two
real equations:

Sba ¼ fðSa þ SbÞa� fðWa �WbÞb; ðB:5Þ

Sbb ¼ fðSa þ SbÞbþ fðWa �WbÞa: ðB:6Þ
If Eqs. (B.5) and (B.6) are pre-multiplied by aT and bT, respectively, and Eq. (B.6) is subtracted from Eq.
(B.5), the symmetry of ðSa þ SbÞ and the anti-symmetry of ðWa �WbÞ result in

yTSby ¼ fyTðSa þ SbÞy; ðB:7Þ
where y ¼ a� b. Since real matrices Sa and Sb are positive definite, Eq. (B.7) means

06 f ¼ yTSby

yTðSa þ SbÞy
6 1; ðB:8Þ

that is, the eigenvalues, ki ð¼ 2fi � 1Þ, of Tab are real and jkij6 1.
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